翻訳と辞書 |
Riemannian submersion : ウィキペディア英語版 | Riemannian submersion
In differential geometry, a branch of mathematics, a Riemannian submersion is a submersion from one Riemannian manifold to another that respects the metrics, meaning that it is an orthogonal projection on tangent spaces. Let (''M'', ''g'') and (''N'', ''h'') be two Riemannian manifolds and : a submersion. Then ''f'' is a Riemannian submersion if and only if the isomorphism : is an isometry. ==Examples==
An example of a Riemannian submersion arises when a Lie group acts isometrically, freely and properly on a Riemannian manifold . The projection to the quotient space equipped with the quotient metric is a Riemannian submersion. For example, component-wise multiplication on by the group of unit complex numbers yields the Hopf fibration.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Riemannian submersion」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|